Alshinayin Haider Jamil Jaber – leading designer of Federal State Budgetary Scientific Institution "All-Russian Research Institute for Use of Machinery and Petroleum Products in Agriculture", Russia, Tambov, e-mail: haiderjjsh2000@yahoo.com.

Поступила в редакцию (Received): 25.12.2020 Принята к публикации (Accepted): 27.01.2021

УДК 631.362.34

DOI: 10.35887/2305-2538-2021-1-36-42

ДИНАМИКА И КАЧЕСТВО ВЫДЕЛЕНИЯ ГРЕЧИШКИ ВЬЮНКОВОЙ ИЗ ЯЧМЕНЯ

¹Тишанинов Николай Петрович
¹Анашкин Александр Витальевич
¹Тишанинов Константин Николаевич
¹Альшинайиин Хайдер Джамил Джабер

¹ФГБНУ «Всероссийский научно-исследовательский институт использования техники и нефтепродуктов в сельском хозяйстве»

Реферат. Представлены зависимости интенсивности выделения семян гречишки выонковой от скоростных режимов работы (n), углового положения выводного лотка (γ_n) в ячеистом μ илиндре, исходной засоренности зерносмеси (3_u). Дана оценка качества процесса по показателям степени выделения примеси ($C_{B_{CT}}$) и остаточной засоренности ячменя ($3_{O_{CT}}$), обеспечиваемых стандартной длиной ($l_{cm}=2,2$ м) ячеистого цилиндра, во взаимосвязи с режимами работы и настроечными параметрами. Установлено, что при $\gamma_n = 35^{\circ}$ на скоростном режиме работы n=45 об/мин обеспечивается максимальная степень выделения примеси ($C_{B_{CT}}=100$ %) стандартной длиной ячеистого цилиндра. С ростом п до 55 об/мин продолжительность полного выделения примеси сокращается на 27,3 %. Рост γ_n до 45° снижает возможности стандартного ячеистого цилиндра до $C_{B_{CT}}=98,5~\%$ при n=40~ об/мин. Однако, при n=55~ об/мин уровень $C_{\rm B_{CT}} = 100~\%$ достигается даже частичным использованием рабочей поверхности ячеистого μ илиндра — $l_{cm} = 73$ %. При $\gamma_n = 35^\circ$ обеспечивается максимальный охват факела выброса частиц кромками выводного лотка, но с ростом п от 40 до 55 об/мин в 4,6 раза возрастают технологические потери за счет усиления эффекта «инерционного удержания» контактирующего слоя. Прирост γ_n до $45-55^\circ$ позволяет в диапазоне n=40-55 об/мин снизить технологические потери в 1,25 – 5 раз. Интенсивность выделения гречишки выонковой в первом интервале времени $m_{i(1)}$ измерений ($t_u=5$ с) при $\gamma_n=35^{\circ}$ увеличивается в 1,95 раза с ростом п в диапазоне 40-55 об/мин. Увеличение γ_n до 55° снижает $m_{i(l)}$ в 5,76 раз. С увеличением скоростного режима работы триера зависимость интенсивности выделения примеси в первых интервалах времени от величины γ_n слабеет, а технологические потери становятся менее стабильными.

Ключевые слова: зерносмесь, гречишка вьюнковая, разделение, триер, динамика процесса, качество.

DYNAMICS AND QUALITY OF EXTRACTION OF BINDWEED BUCKWHEAT FROM BARLEY

¹Tishaninov Nikolay ¹Anashkin Alexander ¹Tishaninov Konstantin ¹Alshinayin Haider Jamil Jaber

¹FSBSI "All-Russian Research Institute for Use of Machinery and Petroleum Products in Agriculture"

Abstract. The dependences of the intensity of seed extraction of bindweed buckwheat on the speed modes of operation (n), the angular position of the hatcher chute (γ_n) in the cellular cylinder, and the initial contamination of the grain mixture (Z_i) are presented. An assessment of the process quality in

terms of the degree of impurity release (C_{wst}) and residual contamination of barley (Z_{ost}), provided by the standard length ($l_{st} = 2.2$ m) of the cellular cylinder, in conjunction with the operating modes and tuning parameters is given. It was found that at $\gamma_n = 35^\circ$ at a high-speed operating mode of n = 45 rpm, the maximum degree of impurity release ($C_{wst} = 100$ %) with the standard length of the cellular cylinder is provided. With an increase in n to 55 rpm, the duration of the complete separation of the impurity decreases by 27.3 %. The growth of γn up to 45° reduces the capabilities of a standard cellular cylinder to $C_{wst} = 98.5$ % at n = 40 rpm. However, at n = 55 rpm, the level $C_{wst} = 100$ % is achieved even by partial use of the working surface of the cellular cylinder $-l_{st} = 73$ %. At $\gamma_n = 35^\circ$, the maximum coverage of the particle ejection plume by the edges of the outlet chute is ensured, but with an increase in n from 40 to 55 rpm, technological losses increase 4.6 times due to the enhancement of the effect of "inertial confinement" of the contacting layer. An increase in γn up to $45 - 55^\circ$ allows in the range n = 40 - 55 rpm to reduce technological losses by 1.25 - 5 times. The intensity of isolation of bindweed buckwheat in the first time interval $m_{i(l)}$ measurements ($t_i = 5$ s) at $\gamma_n = 35^\circ$ increases by 1.95 times with an increase in n in the range of 40 - 55 rpm. An increase in γ_n to 55° reduces $m_{i(l)}$ by 5.76 times. With an increase in the speed mode of the trier operation, the dependence of the intensity of impurity release in the first time intervals on the value of γ_n weakens, and the technological losses become less stable.

Keywords: grain mixture, bindweed buckwheat, separation, trier, process dynamics, quality.

Введение. Выдающиеся представители отечественной земледельческой механики -Горячкин В.П., Летошнев М.Н., Блох З.Ш. создали основы теории триерной очистки зерна [1-4]. Ими глубоко проработаны вопросы взаимодействия, захвата и выброса частиц зерносмесей в отводящий рабочий орган. Эти исследования послужили основой оптимизации параметров ячеистых поверхностей и режимов работы. Базовые положения теории триеров получили дальнейшее развитие в работах [5 - 10], авторы которых впервые получили экспериментально подтвержденные характеристики процессов триерной очистки зерна. Однако, для эффективного управления работой триеров необходимы знания об интенсивности выделения частиц зерносмеси и степени заполнения ячей по длине рабочей поверхности. Кроме того необходимы знания о взаимосвязях режимов работы и настроечных параметров с качеством процесса. Получение этих результатов было ограничено использованием авторами пространственной модели процесса триерной очистки зерна, которая не позволяла связать изменчивые показатели работы с временем смещения зернового сегмента по длине ячеистой поверхности. Разработанные в ФГБНУ ВНИИТиН новая физическая модель процесса и средства для ее реализации [11 – 15] позволили устранить эти противоречия за счет его непрерывного интервально-временного контроля по результативным характеристикам. При этом обеспечивалась объективность оценок, кардинальное сокращение затрат и инвариантность результатов относительно длины ячеистой поверхности. С использованием новой физической модели впервые получены значения о закономерностях протекания процесса по длине ячеистой поверхности и специфических эффектах, значимо влияющих на него [16, 17]. Эти исследования выполнены применительно к процессам триерной очистки зерносмеси на основе пшеницы. Физико-механические свойства ячменя существенно отличаются от свойств пшеницы, а объем его производства в России составляет 8-10 млн. тонн в год. Поэтому расширение знаний по видам зерновых материалов, необходимых для управления технологиями их триерной очистки, представляет собой актуальную задачу.

Материалы и методы. В работе использовались приборы для разделения зерносмесей и определения физико-механических свойств сыпучих материалов, методы идентификации производительности триера по результатам стендовых исследований и расчета эквивалентной длины ячеистой поверхности, решетный классификатор и электронные весы.

Результаты и их обсуждение. Основная серия опытов проводилась с использованием стенда циклического действия [13, 14], обеспечивающего реализацию временной физической модели процесса разделения зерносмесей. В этой серии опытов сохранялись величины навески на уровне $m_{\rm H}=1000$ г и исходной засоренности — $3_{\rm H}=2$ %. Скоростной режим работы (n) менялся на четырех уровнях в диапазоне n=40-55 об/мин с интервалом в 5 об/мин, а угол подъема верхней кромки передней стенки выводного лотка относительно горизонта ($\gamma_{\rm n}$) — на трех уровнях в диапазоне $35-55^{\circ}$. Физико-механические свойства семян гречишки вьюнковой следующие: насыпная плотность — $467~{\rm kr/m}^3$; линейные размеры — $3,42~{\rm x}$ $2,68~{\rm x}$ $2,51~{\rm km}$; угол внутреннего трения — $34,2^{\circ}$; влажность — 12,5%; масса $1000~{\rm cemя}$ — $7,0~{\rm r}$.

Экспериментальными исследованиями было установлено, что процесс выделения гречишки выонковой из ячменя носит лавинообразный характер из-за эффекта ее динамической сегрегации в циркулирующих слоях сегмента, когда основная масса примеси выделяется на начальных интервалах времени замеров, рисунок 1. Поэтому семена гречишки выонковой можно отнести к легковыделяемым примесным компонентам.



Рисунок 1 — Зависимость интенсивности выделения гречишки вьюнковой (m_i) от времени (t) при различных скоростных режимах (n), $(3_n = 2\%; \gamma_n = 35^\circ)$

Из рисунка 1 видно, что при $\gamma_n = 35^\circ$ продолжительность процесса выделения примеси сокращается с ростом скоростного режима работы (n). Уже при n = 45 об/мин максимальную степень выделения примеси обеспечивает стандартная длина (l = 2,2 м) ячеистой поверхности. С увеличением n до 55 об/мин, что соответствует величине коэффициента кинематического режимам K = 0,508, продолжительность выделения примеси сокращается дополнительно на 27,3%.

При положении верхней кромки передней стенки выводного лотка под углом к горизонту $\gamma_{\rm n}=45^{\circ}$ и скоростном режиме работы n=40 об/мин стандартная длина ячеистой поверхности обеспечивает выделение лишь 98,5 % примеси. Хотя уровень остаточной засоренности зерносмеси при этом является приемлемым и составляет — $3_{\rm ocr}=0.03$ %. Увеличение n до 45 об/мин повышает степень выделения примеси до 99,1 %, а при n=55 об/мин $C_{\rm Bcr}=100$ % даже при частичном использовании рабочей длины стандартного ячеистого цилиндра (73 % — 1,6 м).

Ранее нами установлено [17], что для снижения технологических потерь необходимо увеличивать γ_n , но при этом снижается степень выделения примеси на сопоставимой длине ячеистого цилиндра. Исследованиями зерносмеси на основе ячменя подтверждено, что при n=40 об/мин и $\gamma_n=55^\circ$ степень выделения примеси снижается до $C_{B_{CT}}=71,3$ %, а продолжительность процесса увеличивается почти в 2 раза. Вместе с тем, при больших величинах γ_n снижаются технологические потери (Π) во всем диапазоне скоростного режима работы (рисунок 2) и увеличивается продолжительность процесса.

Из рисунка 2 видно, что захват и выброс зерновок основной культуры ячеями представляет собой случайный процесс. Большая часть факела выброса попадает в выводной лоток при γ_n = 35°. В этом положении верхней кромки выводного лотка с ростом n в диапазоне 40 - 55 об/мин технологические потери возрастают в 4,6 раза. При γ_n = 45° и 55° соответствующий прирост технологических потерь с ростом скоростного режима работы ниже - в 5 и 1,25 раза

соответственно. Это связано с тем, что верхняя граница факела выброса примесных частиц с ростом скоростного режима работы прирастает менее интенсивно. Вместе с тем, абсолютные значения потерь находятся в допустимых пределах.

Рисунок 2 — Зависимость технологических потерь (Π) от скоростного режима (n) при выделении гречишки вьюнковой из ячменя ($3_{\rm H} = 2$ %; $m_{\rm H} = 1000$ г)

Выше была дана оценка динамики и качества процесса выделения семян гречишки вьюнковой в зависимости от скоростного режима работы (n) и положения выводного лотка (γ_n) . Однако, из выполненного анализа можно заметить, что смена условий протекания процесса приводит к неоднозначным соотношениям выделяемых масс примеси по длине ячеистой поверхности. Например, из рисунка 1 видно, что в первом интервале времени замеров при $\gamma_n = 35^\circ$ и максимальном скоростном режиме (n = 55 об/мин) величина m_i в 1,95 раз больше, чем m_i на минимальном скоростном режиме (n = 40 об/мин). Во втором интервале замеров соотношение m_i меняется на противоположное и составляет 0,54.

Из изложенного выше следует, что сравнение динамики объективнее производить по первым интервалам времени замеров, так как результаты в последующих интервалах зависят не только от заданных режимов работы и настроечных параметров, но и от остаточного содержания примесного компонента в зерносмеси. В приведенном выше сопоставлении, в частности, во втором интервале времени замеров в отводящий лоток подается больший по угловому размеру факел примесных частиц, но причина снижения m_i состоит в другом — плотность факела резко падает после первого интервала времени реализации процесса.

Результаты сравнения динамики процессов по первым интервалам времени измерений представлены на рисунке 3. Из рисунка 3 видно, что при минимальном скоростном режиме работы зависимость масс выделенных частиц примесного компонента от величины γ_n самая большая. С увеличением γ_n от 35 до 55° разница величин $m_{i(1)}$ падает в 5,76 раз. Это объясняется тем, что при n=40 об/мин лишь малая часть факела выброса частиц преодолевает верхнюю кромку передней стенки выводного лотка, расположенную под углом $\gamma_n=55^\circ$ к горизонту.

При этом продолжительность процесса резко увеличивается. За 200 с, когда эквивалентная длина ячеистой поверхности составляет 8 м (в 3,6 раз больше длины стандартного кукольного цилиндра), выделяется 97,5 % примеси из зерносмеси с исходной засоренностью 2 %. На стандартной длине выделяется только 71,3 % примеси, а остаточная засоренность составляет 0,574 %, что превышает допустимый уровень.

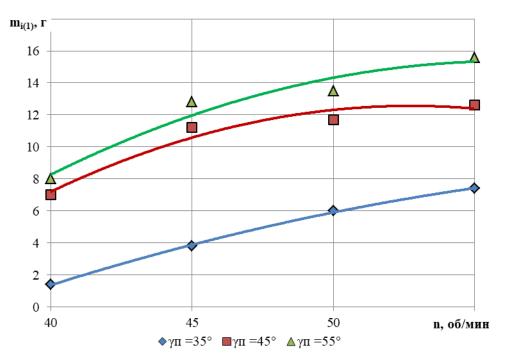


Рисунок 3 — Зависимость интенсивности выделения гречишки вьюнковой в первом интервале времени замеров (t_u = 5 с) от n и γ_n при $m_{\rm H}$ = 1000 г, $3_{\rm H}$ = 2 %

С ростом скоростного режима работы до 55 об/мин величина $m_{i(1)}$ меняется в более узком диапазоне – в 2,15 раз. При $\gamma_{\rm n}=\gamma_{\rm n}$ $_{\rm min}=35^{\circ}$ величина $m_{i(1)}=m_{i(1)}$ $_{\rm max}=15,72$ г. То есть, выводной лоток в этом режиме охватывает максимальный по угловому размеру факел выброса примесных частиц. Степень выделения примесей на стандартной длине достигает 99,55 %, что при $3_{\rm H}=2$ % обеспечивает уровень остаточной засоренности $3_{\rm O_{cr}}=0,009$ %.

Выводы. Семена гречишки вьюнковой являются легковыделяемой примесью из зерносмеси на основе ячменя. Для них характерна высокая степень динамической сегрегации в циркулирующих слоях сегмента, поэтому основная доля примеси выделяется в первых интервалах времени замеров. При малых углах подъема верхней кромки передней стенки выводного лотка полное выделение примеси из ячменя достигается даже на среднем скоростном режиме работы триера и частичном использовании рабочей длины стандартного ячеистого цилиндра. С увеличением угла поворота выводного лотка снижаются технологические потери, но увеличивается продолжительность процесса.

Список литературы

- 1. Горячкин В.П. Собрание сочинений в 3-х томах. М.: Колос. 1965. Т. 1. С. 244 253; Т. 2. С. 179 185.
- 2. Летошнев М.Н. Теория триера / Сборник научно-технических работ Ленинградского института механизации сельского хозяйства. Л. 1948. Вып. IV. С. 3-58.
- 3. Летошнев М.Н. О движении зерна внутри горизонтального вращающегося цилиндра / Сборник научно-технических работ Ленинградского института механизации сельского хозяйства. Сельхозгиз. 1950. Вып. 7.
 - 4. Блох 3.Ш. Теория триера // Сельскохозяйственные машины. -1935. -№ 2. С. 17 20.
- 5. Урханов Н.А. Интенсификация послеуборочной обработки и очистки зерна от примесей по длине. Улан-Удэ: Изд-во ВСГТУ. 1999. 319 с.
- 6. Павловский Г.Т. Экспериментальное обоснование выбора параметров цилиндрических триеров // Сборник трудов по земле-дельческой механике. М. Л.: Сельхозгиз, 1952. C. 231 248.

- 7. Абидуев А.А. Определение положения лотка триерного цилиндра // Сибирского вестник сельскохозяйственной науки. -2009. -№ 5. C. 93 98.
- 8. Викторова Н.Н., Ивлиева Н.М., Кубышев В.А. Влияние параметров цилиндрического триера на эффективность его работы // Труды ВНИИЗ. Вып. 42. 1962. С. 245 253.
- 9. Викторова Н.Н., Кубышев В.А. Влияние подпорного кольца на вычерпываемость короткой фракции в триерном цилиндре // Труды ЧИМЭСХ Челябинск. 1958. Вып. 6.
- 10. Викторова Н.Н., Ивлиева Н.М., Кубышев В.А. Основные закономерности процесса работы цилиндрического триера. Проблемы сепарирования зерна и сыпучих материалов // Труды ВНИИЗ. М. 1963. Вып. 42. С. 255 265.
- 11. Патент РФ № 2492940. Стенд для испытаний ячеистых поверхностей / Тишанинов Н.П., Анашкин А.В., Амельянц А.Г., Тишанинов М.А., Растюшевский К.А. № 2012112301/03; заявл. 29.03.2012; опубл. 20.09.2013. Бюл. № 26.
- 12. Патент РФ № 2492941. Стенд для испытаний ячеистых поверхностей / Тишанинов Н.П., Амельянц А.Г., Анашкин А.В., Тишанинов К.Н., Растюшевский К.А. № 2012113207/03; заявл. 04.04.2012; опубл. 20.09.2013. Бюл. № 26.
- 13. Патент РФ № 2616201. Стенд для испытаний ячеистых поверхностей / Тишанинов Н.П., Анашкин А.В. № 2016108182; заяв. 09.03.2016; опубл. 13.04.2017. Бюл. № 11.
- 14. Патент РФ № 2647526. Прибор для выделения примесей из зерносмесей / Тишанинов Н.П., Анашкин А.В. № 2017114302; заявл. 24.04.2017; опубл. 16.03.2018. Бюл. № 8.
- 15. Тишанинов Н.П., Анашкин А.В. Модернизированный прибор для выделения примесей из зерносмесей «ТИАН 1» // Сельский механизатор. 2019. № 1. С. 4 5.
- 16. Тишанинов Н.П., Анашкин А.В. Интенсивность выделения зерновок основной культуры из зерносмесей с длинными примесями // Вестник АПК Верхневолжья. 2019. № 3 (47). С. 74 77.
- 17. Анашкин А.В. Результаты экспериментальных исследований динамики выделения коротких примесей ячеистой поверхностью / В сборнике: Повышение эффективности использования ресурсов при производстве сельскохозяйственной продукции новые технологии и техника нового поколения для растениеводства и животноводства. XVIII Международная научнопрактическая конференция. 2015. С. 92-96.

References

- 1. Gorjachkin V.P. Sobranie sochinenij v 3-h tomah. M.: Kolos. 1965. T. 1. S. 244 253; T. 2. S. 179 185.
- 2. Letoshnev M.N. Teorija triera / Sbornik nauchno-tehnicheskih rabot Leningradskogo instituta mehanizacii sel'skogo hozjajstva. L. 1948. Vyp. IV. S. 3 58.
- 3. Letoshnev M.N. O dvizhenii zerna vnutri gorizontal'nogo vrashhajushhegosja cilindra / Sbornik nauchno-tehnicheskih rabot Leningradskogo instituta mehanizacii sel'skogo hozjajstva. Sel'hozgiz. 1950. Vyp. 7.
 - 4. Bloh Z.Sh. Teorija triera // Sel'skohozjajstvennye mashiny. 1935. № 2. S. 17 20.
- 5. Urhanov N.A. Intensifikacija posleuborochnoj obrabotki i ochistki zerna ot primesej po dline. Ulan-Udje: Izd-vo VSGTU. 1999. 319 s.
- 6. Pavlovskij G.T. Jeksperimental'noe obosnovanie vybora parametrov cilindricheskih trierov // Sbornik trudov po zemle-del'cheskoj mehanike. M. L.: Sel'hozgiz, 1952. S. 231 –248.
- 7. Abiduev A.A. Opredelenie polozhenija lotka triernogo cilindra // Sibirskogo vestnik sel'skohozjajstvennoj nauki. 2009. № 5. S. 93 98.
- 8. Viktorova H.H., Ivlieva N.M., Kubyshev V.A. Vlijanie parametrov cilindricheskogo triera na jeffektivnost' ego raboty // Trudy VNIIZ. Vyp. 42. 1962. S. 245 253.
- 9. Viktorova H.H., Kubyshev V.A. Vlijanie podpornogo kol'ca na vycherpyvaemost' korotkoj frakcii v triernom cilindre // Trudy ChIMJeSH Cheljabinsk. 1958. Vyp. 6.
- 10. Viktorova H.H., Ivlieva N.M., Kubyshev V.A. Osnovnye zakonomernosti processa raboty cilindricheskogo triera. Problemy separirovanija zerna i sypuchih materialov // Trudy VNIIZ. M. 1963. Vyp. 42. S. 255 265.
- 11. Patent RF № 2492940. Stend dlja ispytanij jacheistyh poverhnostej / Tishaninov N.P., Anashkin A.V., Amel'janc A.G., Tishaninov M.A., Rastjushevskij K.A. № 2012112301/03; zajavl. 29.03.2012; opubl. 20.09.2013. Bjul. № 26.

- 12. Patent RF № 2492941. Stend dlja ispytanij jacheistyh poverhnostej / Tishaninov N.P., Amel'janc A.G., Anashkin A.V., Tishaninov K.N., Rastjushevskij K.A. № 2012113207/03; zajavl. 04.04.2012; opubl. 20.09.2013. Bjul. № 26.
- 13. Patent RF № 2616201. Stend dlja ispytanij jacheistyh poverhnostej / Tishaninov N.P., Anashkin A.V. № 2016108182; zajav. 09.03.2016; opubl. 13.04.2017. Bjul. № 11.
- 14. Patent RF № 2647526. Pribor dlja vydelenija primesej iz zernosmesej / Tishaninov N.P., Anashkin A.V. № 2017114302; zajavl. 24.04.2017; opubl. 16.03.2018. Bjul. № 8.
- 15. Tishaninov N.P., Anashkin A.V. Modernizirovannyj pribor dlja vydelenija primesej iz zernosmesej «TIAN 1» // Sel'skij mehanizator. 2019. Note 1. Social 1. Social 2. Social
- 16. Tishaninov N.P., Anashkin A.V. Intensivnost' vydelenija zernovok osnovnoj kul'tury iz zernosmesej s dlinnymi primesjami // Vestnik APK Verhnevolzh'ja. 2019. № 3 (47). S. 74 77.
- 17. Anashkin A.V. Rezul'taty jeksperimental'nyh issledovanij dinamiki vydelenija korotkih primesej jacheistoj poverhnost'ju / V sbornike: Povyshenie jeffektivnosti ispol'zovanija resursov pri proizvodstve sel'skohozjajstvennoj produkcii novye tehnologii i tehnika novogo pokolenija dlja rastenievodstva i zhivotnovodstva. XVIII Mezhdunarodnaja nauchno-prakticheskaja konferencija. 2015. S. 92 96.

Сведения об авторах

Принадлежность к организации

Тишанинов Николай Петрович – доктор технических наук, профессор, главный научный сотрудник Федерального государственного бюджетного научного учреждения «Всероссийский научно-исследовательский институт использования техники и нефтепродуктов в сельском хозяйстве», Россия, г. Тамбов, e-mail: vniitinlab5@mail.ru.

Анашкин Александр Витальевич – кандидат технических наук, ведущий научный сотрудник Федерального государственного бюджетного научного учреждения «Всероссийский научно-исследовательский институт использования техники и нефтепродуктов в сельском хозяйстве», Россия, г. Тамбов, e-mail:av-anashkin@mail.ru.

Тишанинов Константин Николаевич — кандидат технических наук, старший научный сотрудник Федерального государственного бюджетного научного учреждения «Всероссийский научно-исследовательский институт использования техники и нефтепродуктов в сельском хозяйстве», Россия, г. Тамбов, e-mail: TishaninovKN@rambler.ru.

Альшинайиин Хайдер Джамил Джабер — ведущий конструктор Федерального государственного бюджетного научного учреждения «Всероссийский научно-исследовательский институт использования техники и нефтепродуктов в сельском хозяйстве», Россия, г. Тамбов, e-mail: haiderjjsh2000@yahoo.com.

Author credentials Affiliations

Tishaninov Nikolai – Full Doctor of Technical Sciences, Professor, Chief Researcher of Federal State Budgetary Scientific Institution "All-Russian Research Institute for Use of Machinery and Petroleum Products in Agriculture", Russia, Tambov, e-mail: vniitinlab5@mail.ru.

Anashkin Alexander – Candidate of Technical Sciences, Leading Researcher of Federal State Budgetary Scientific Institution "All-Russian Research Institute for Use of Machinery and Petroleum Products in Agriculture", Russia, Tambov, e-mail: av-anashkin@mail.ru.

Tishaninov Konstantin – Candidate of Technical Sciences, Senior Researcher of Federal State Budgetary Scientific Institution "All-Russian Research Institute for Use of Machinery and Petroleum Products in Agriculture", Russia, Tambov, e-mail: TishaninovKN@rambler.ru.

Alshinayin Haider Jamil Jaber – leading designer of Federal State Budgetary Scientific Institution "All-Russian Research Institute for Use of Machinery and Petroleum Products in Agriculture", Russia, Tambov, e-mail: haiderjjsh2000@yahoo.com.

Поступила в редакцию (Received): 11.01.2021 Принята к публикации (Accepted): 12.02.2021